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Abstract. A theory of Wannier excitons in polar semiconductors that provides a simultaneous 
treatment of electron-phonon and exchange interactions, local-field effects and band 
degeneracy is formulated. The Bethe-Salpeter equation for the exciton Green function is 
reduced to an effective eigenvalue equation, taking into account the frequency dependence 
of the dielectric function that screens the electron-hole interactions. In comparison with the 
Coulomb attraction between the electrons and holes in a rigid lattice, screened by the 
optical constant, our effective potential contains an additional term due to the exchange of 
longitudinal polaritons. It is shown that in the case of r6 x rp excitons our treatment leads 
to adecrease of the electron-phononvertex incomparison to the Frohlichone r4 = i(2ne2wo/ 
q * ~ * ) ’ / ~  by the factor 11 - {[3 - (E , /E~) ] / [~  - (E l /Eo) ] }A~~/&]”’ ,  where ET and A i T  are the 
energy of the transverse exciton and its longitudinal-transverse splitting at the Q = 0 point, 
and wg = RTO(EO/E,)”* according to the Lyddane-Sachs-Teller relation. 

1. Introduction 

The concept of Wannier excitons interacting with phonons is needed for interpretation 
of optical spectra of semiconductors. In polar semiconductors the interaction with optical 
phonons dominates as compared with the interaction with phonons of other types. In 
fact, most of present work on the exciton-Lo phonon system in polar crystals is an 
extension of the Frohlich Hamiltonian (Frohlich et a1 1950), derived for describing the 
interaction between electrons and phonons. According to the Frohlich model, excitons 
in polar crystals are considered as two excitons, e.g. an electron and a hole in polar 
semiconductors interact to a good approximation via a Coulomb interaction screened by 
the optical dielectric constant. The Frohlich model was studied by different mathematical 
techniques: perturbation theory (Wang and Matsuura 1974), variational calculations 
(Hattori 1976, Po!lmann and Buttner 1977, Rossler and Trebin 1981), path-integral 
methods (Adamowski et aZ198l), Green function methods (Shindo 1970, Mahanti and 
Varma 1972, Sac 1972, Klochihin 1980) and the equation-of-motion method (Oswald 
and Egri 1983). The Frohlich theory is certainly the correct picture as long as the 
electron and hole that constitute the exciton are well separated, and therefore interact 
individually with phonons. In real crystals, however, there exist well defined composite 
excitations (polaritons), formed by the coupling of excitons, phonons and photons 
(Koinov and Glinskii 1988,1989, Glinskii and Koinov 1989). Unfortunately, these exact 
states are so complicated that they are almost of no use in calculating observable 
quantities. For this reason we decompose our electron-phonon-photon system into 
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two subsystems, excitonic polaritons and phonons, with the following properties: the 
eigenstates of the first one are simple enough to be treated exactly by suitable math- 
ematical techniques, while the interaction between two subsystems is small enough to 
be treated by perturbation theory. 

In view of the fact that most papers are based on the Frohlich Hamiltonian, there 
may be a need to clarify the motivations for our approach. First, this approach is free 
from the assumption that electrons and holes couple separately to Lo-phonon branch. 
Secondly, the many-body aspect of the bound state (electron-hole-Lo phonon) can 
be dealt with more systematically, so all possible correlation and screening effects 
are included in principle. Thirdly, this approach provides a simultaneous treatment of 
electron-phonon and exchange interactions, local-field corrections and band 
degeneracy. 

2. Model 

In this paper we consider the non-relativistic bound-state problem in the system of 
interacting electrons, phonons and photons. In terms of the field theory we deal with a 
boson (photon) field A,(z) interacting with a fermion (electron) field g(y) (or Y(x)) 
and with a boson (phonon) field uh(()  at zero temperature. Here y = {r,  U ,  r}, x = 
{r', d, t'}, z = (p, t} and ( = {RI, K, t} are composite variables: r,  r',  p are radius vectors; 
a, p, A ,  p label the Cartesian coordinates; RI is a radius vector of the lth unit cell, 1 = 
1 , 2 ,  . . . , N ;  K = 1,2 ,  . . . , s characterises the atoms in the unit cell. There exists atoms 
in a primitive cell, and the crystal consists of Ncells. 

The system under consideration has the following action 

(1) S = $4 + $4 + S&"' + $4 + S(.r-Q). 

Here the action S&") describes the photon field, while the material system (semi- 
conductor) is described by the action Sg") of non-interacting electrons in a periodic lattice 
potential and by the action Si") for bare phonons. The radiation and the matter interact 
via an electron-radiation interaction and phonon-radiation interaction, described by 
the actions S("-") and S(.r-n), respectively (Koinov and Glinskii 1988). 

As was mentioned above, the characteristic feature of the optical processes in polar 
semiconductors is the predominance of the interaction of the photons with LO phonons 
as compared with phonons of other types. For this reason, we can neglect the short- 
range part of the photon-phonon interaction in comparison to its long-range part. In 
this approximation one has for the action 

PQ) = A,"(C) P a )  

where the long-range part of the photon-phonon vertex has the form 

In the above equations the summation-integration convention, that the repeated 
variables are summed up or integrated over, is assumed. PEA (Q) are phenomenological 
parameters, determining the polarisation of the crystal at the point p due to the atomic 
displacements u t .  
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The fundamental point in our approach is that all quantities of interest can be 
expressed in terms of appropriate Green functions. If we investigate the optical proper- 
ties of semiconductors in the range of the fundamental absorption spectra, the discus- 
sions naturally centre on the behaviour of the excitons, since the absorption spectra are 
intimately related to the imaginary part of the dielectric function. The latter is primarily 
connected with the exciton Green function. In fact, the dielectric function can be written 
in the following form (Koinov and Glinskii 1988) 

where the proper self-energies of the photon n$ and n$ can be obtained from 
equations (43) of the above-mentioned paper by neglecting the short-range part of the 
photon-phonon vertex and by making the analytic continuations off the set points io, 
along the imaginary axis into the appropriate half of the w plane. The first term 
describes the scattering of photons from phonons due to the long-range part of the 
photon-phonon interaction 

where Za(A, Q )  = P&(Q)e;(A, Q ) .  Here hQ,(Q) are the energies of bare phonons with 
wavevectors Q in the Brillouin zone and A branch index, e;(jl, Q )  denotes the phonon 
eigenvectors, and M O  and Vo are the mass of the atoms in the unit cell and its volume. 

The second term IIfA(Q, o) represents the combined effect of electron-photon and 
photon-phonon interactions on the photon scattering processes 

where Ja(Q) is a single-particle current operator, and KQ is the exciton Green 
function. In the above equation we have used the basis 11) = Is1, nl ,  k:) by k . p  
perturbation theory (see Glinskii and Koinov 1987). k' is a vector of the Brillouin zone, 
near to kb; kb is the vector of the conduction band minimum or the valence band 
maximum; i is the number of the equivalent extremum; s stands for the type of the 
irreducible representation of the point-group symmetry at the point kb; n is the index of 
the degenerate states at the point kb that have the same transformation properties as the 
basis functions obeying the irreducible representation s. 

3. Bethealpeter equation for the exciton Green function 

The exciton four-time-variables Green function 
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has the following Fourier transform 

+cc d Q  d Q '  d o  - - exp{i[Q(t, - t l )  - Q'(t ,  - t 3 )  

The exciton Green function 

which is needed for determining the self-energy part TI?), is defined as 

From 12(a) and (42) of Koinov and Glinskii (1988) one can write the following 
Bethe-Salpeter equation for the exciton Green function 

where K(O)-l is the inverse free two-particle propagator and IE is the Elliott exchange 
interaction. In (6) the following abbreviation has been introduced: d12 = 
8sls28nln28ilr28k;lk;2.  The kernel I represents the sum of all connected diagrams with 
two lines entering and two leaving such that no part can be disconnected by cutting a 
pair of electron-hole lines: 

(7a) 

-& -= .+ 

The rules making up the contribution of the diagrams to the algebraic form are 

P w , a  a 
DWp(Q, w )  is the photon Green function 

(l/hcV'/2)(1 lJiy(Q)i2) is the electron-photon vertex 

2 w 1  
L_. G(2, 1; w )  is the one-particle electron (or hole) Green function. 

(7b) 
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From (6) one can conclude that the Bethe-Salpeter equation is not closed for 

because the integration over 8' on the left-hand side cannot be carried out immediately 
on account of the dynamic character of the kernel I .  

Quite generally, if we restrict the range of frequencies w in the Fourier transform 
(5a) to the neighbourhood of position *U,&), which are just the exciton eigenstates 
with a band index n and a wavevector Q within the Brillouin zone, we may write for the 
four-time-variables Green function 

F g  (Q )@ (Q')* - F;20 (Q ) *Fif (s2 ') 
Q ; Q ' ; w  = "(t ) w-w,(Q)+iO+ w+w,(Q)+iO+ 

where R(w)  is a term regular at w = Jto,(Q). In the above equation 12) = pis2, n 2 ,  kt) = 
Is;, n 2 ,  -kp), where pis the timeinversionoperator. Thefunctions ef(Q) areassumed 
to be non-zero only in the case when the states 12) and 11) stand for the hole and electron 
states, respectively. 

Let us define the exciton wavefunction Gf , which is the probability amplitude at 
one time to find an electron at state 11) and a hole at state 12) 

From equations (4b), (5b) and (8) it follows that in the region of frequencies w such 
that w = w,(Q) the self-energy part llfj assumes the form 

An exact equation for Gf(Q) can be derived from the Bethe-Salpeter equation (6) 
making the integration along the contour enclosing the point w,(Q) in the complex plane 
o. The result is 

Fif(Q) = -iG(l, 3; Q + w,)G(;?, 2; a) 
--5 

Our further aim, however, is to extract the dominant contributions to the kernel Zof 
the exact equation (lo), in order to reduce the Bethe-Salpeter equation to an effective 
eigenvalue equation to determine the exciton wavefunctions Gf and corresponding 
energies fiwn(Q). 
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4. Relevant approximations 

In order to derive an effective eigenvalue equation, which determines the exciton 
energies hwn(Q) and corresponding wavefunctions, some approximations have to be 
made. They are as follows. 

(i) In the gauge we have used (the scalar potential is set equal to zero) one can 
separate the direct electron-hole interaction (the first diagram in equation (7a)) into an 
instantaneous (Coulomb) part and a retardation part. This can be done by writing the 
photon propagator as the sum of longitudinal and transverse parts. Since the retardation 
part is proportional to (e2/hc)2, it can be neglected in comparison to the Coulomb part. 

w ) ,  defined by 
equations (3), (4a) and (96), and the longitudinal part of the photon Green function 
have the forms 

In crystals with a cubic point group the dielectric function 

Let us denote by Q,(Q) the longitudinal polaritons (or longitudinal normal modes) 
in the crystal, which can be determined by the equation &(e, Q,,) = 0. Then, from (116) 
it follows that 

Thus, by making use of the Kramers-Kronig relation and from equation (11) we can 
write for the time-order inverse dielectric function 

1 
( Q , ( Q )  - w - iO+ + Q , ( Q )  + w - io+ 

where we have introduced the high-frequency dielectric function 

After the above approximations, the first term in equation (7a) assumes the form 

and the rules making up the contribution of the above diagram are 
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(11 exp(-iK.f)/3) 

6513 

1 
( Q v ( K )  - o - iO+ + Q.(K)  + o - iO+ 

(ii) The single-particle Green functions entering (10) satisfy Dyson's equations with 
the mass operators written as the sum of a Hartree part and a screened Fock part (Koinov 
and Glinskii 1988, 1989, Glinskii and Koinov 1989). By extracting from the mass 
operators only the screened Fock terms 

one can write the following Dyson's equations 

G -'(3,1; Q )  = G(0)-1(3, 1; Q )  - (3 , l ;  Q )  (14a) 
e 

Let us assume that the single-particle electron Gn?:(k; l )  and hole @2i2(ki2) 
wavefunctions are known by a previous solution of a band eigenvalue problem (in a 
Hartree approximation) (Glinskii and Koinov 1987) 

HfA n ,  (ki1 )@ ill  iI i(kil = Ei, (kil )@?lil (kil ) (15a) 

(15b) H",2,,, ( k ? ) @ L  (ki2) = Eiz(kiz)@~\i21k12). 

Here HfjjnI (@) and HS,:,?, (ki2) are the corresponding Luttinger matrices. If we can 
solve equations (15), then the single-particle Green functions in the quasi-particle 
approximation are 

where the following abbreviation has been introduced: AI3 = G s l s g ~ r l r 3 G k ; ~ ~ ; .  

mentioned approximations, have the forms 
The corresponding electron and hole mass operators, according to the above- 
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In the conclusion of this section some comments should be made concerning the 
differences between our approach and others, which are based on the Frohlich theory. 
The main difference is that in our approach the effective interaction between electrons 
and holes is not only the interaction screened by the optical constant Coulomb attraction 
but the interaction due to the exchange of the longitudinal polaritons as well. In the 
Frohlich model the last interaction is due to the exchange of the phonon polaritons, 
which are formed by the coupling of photons with optical phonons. Thus, due to the 
retardation effects in the Frohlich theory the effective interaction between electrons and 
holes depends on the exciton binding energy. In our method this effective interaction 
depends not only on the binding energy but on the exciton wavefunctions as well, so one 
can say we have a self-consistent approach. 

5. Effective eigenvalue equation 

In the case when the retardation effects (or the effects due to the exchange of the 
longitudinal polaritons) are neglected, the solution of the Bethe-Salpeter equation (10) 
has the following form 

Here we have used the abbreviation {1,2} = {sl, i l  , k: ; s2 ,  i2, k?} and the function 
R(S2) is a regular function in the frequency plane with the following property 

[ ( l / f i )E l , (k? )  - on<Q>l = R I ~ ~ l } ' f l Q [ ( l / ~ ) ~ l * ( k ~ ) l ,  (18b) RI:il}.nQ 

Further, our aim is to extract by using perturbation theory the contributions (due to 
the exchange of longitudinal polaritons) to the screened Coulomb attraction, in a manner 
such that equations (18) hold. If one takes into account the operators & and &, and the 
first diagram in (7a ) ,  the following eigenvalue equation for the exciton wavefunction 
Gf can be obtained 

6 54 A 13 Hi:n3 (k? ) - 13 A%H:n2 (k?)  
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Here IC and IE are the screened Coulomb attraction and the Elliott exchange 
interaction. The leading term of I C  is diagonal in the band indices 

The corrections AZc and AItp are due to the short-range part of the Coulomb 
potential and to the k . p  interaction with other bands (Bir and Pikus 1974, Glinskii and 
Koinov 1987). The Elliott exchange interaction has the form 

4ne2 1 
I E  (i :) = 6 k y + k i 2 , k i 3 + k i 4  

- - v G,fOlGn12 

X (llexp(iG, .a)l2) (4lexp(-iG, -.f)I3). 
- -  

(20b) 

In (19) the effective electron-longitudinal polariton vertex UV,K is defined as 

1 3  - 112 

x [a, (1 I exp(-iK a) I 3) - 8 13 (71 exp(-iK a) 12)~. 

The free two-particle propagator has the form (Glinskii and Koinov 1987) 

x {W - (~/ t i ) [E/~(kb)  - E12(k$)]  + iO+>-l]. (21b) 

It is easy to see that the other diagrams in (7a) modify (19), and the new form can be 
obtained by replacing the last term in the left-hand side of (19) by the following term 

Where the two-particle propagator Ke-w satisfies the Bethe-Salpeter equation 

1 3  

2 4  2 4  

1 3  3 5  

2 4  
X Iexc ( I@)]  Ke-0 (4 I w, = '15'26 
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where I,,, is the long-range exchange interaction 

and D$ is the photon Green function, screened by the dielectric constant, which 
accounts for all other bands, not explicitly considered in the above equation 

The term given by (22a) plays an important role in the theory of the first-order 
resonant Raman scattering of light due to LO phonons (Koinov 1989). 

6.  rS-rs excitons 

Let us restrict ourselves to the case of Td direct-band-gap polar semiconductors with two 
atoms per cell. We assume that the exciton state is formed by the r6 conduction and rs 
valence band, neglecting the influence of the split-off band. In this case we have for the 
conduction band 

E , , ( k )  = E , @ )  = EG + (h2k2/2m,) 

and 
E[ , (k )  = E, (k )  = -{Ak2 * [Bk4 + (D2 - 3B2)(k:k,2 + k:kz + ky”k~>]’/’}  

for the light (1 = 1,2)  and heavy (I = 3,4)  hole bands. The Luttinger matrices H,, , (k)  
and H,,((k)  (c = +1/2, U = +3/2, *1/2), as well as the corresponding wavefunctions 
@,,(k) ,  are given in Bir and Pikus (1974). 

Let us now turn to a detailed discussion of equation (19). In the zero-order approxi- 
mation the electrons and holes interact via an instantaneous Coulomb interaction 
screened by E , .  In this approximation the eight-fold degenerate ground state r6-r8 is 
decomposed by Elliott exchange into exciton states with r3, r4 and Ts symmetry. If the 
Schrodinger equation (19) ( U v , K  = 0) can be solved analytically, one may obtain the 
dielectric function E(K,  U )  by using equations (3), (4a) and (9b). 

In the case of a simple one-oscillator model, when theK dependence of the dielectric 
function is not taken into account, one may write for E ( @ )  

&2;22Lo - w 2  E [  - E $  1 
&(U) = E ,  + 

(S2$o  - w 2  E$ - h2w2 

where E ,  is the background dielectric constant, which accounts for all oscillators not 
explicity considered in the above model. QTO is the transverse optical frequency, associ- 
ated with the eigenvectors of the dynamic matrix for the bare phonon problem. In (23a) 
we have introduced the frequency 

where Z = Z,(TO, Q)Q,/i Ql is the effective charge. ET is the energy of the Ts exciton 
at the point I‘ of the Brillouin zone, and EL = ET + ALT. where ALT is the longitudinal- 
transverse splitting. 
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For semiconductors ALT 4 E T  (Levy et ai 1985). Thus, the solutions of the equation 
&(nu) = OarehQl = ElandQ2 = wo[ l  - (ALT/ET)],wherewehaveintroducedthe~o- 
phonon frequency w o  = QTo ( E , , / & , )  1/2 according to the Lyddane-Sachs-Teller relation 

for v = 1,2,  
according to (21a). It is easy to see that the exchange of longitudinal polaritons of type 
Q 1  leads to an additional term to the screened Coulomb interaction that is of order 
(ALT/EG),  and therefore we may conclude that this exchange gives a very small con- 
tribution to the exciton binding energy. In real crystals that exchange can be neglected. 

From equations (21a) and (23a) the effective vertex Uu,K is obtained in the following 
form 

( E 0  = E ( O  = 0)). 
Further, in order to solve (19) self-consistently, we must calculate 

2ne2cij0 lJ2 

VK2&* (I ') = i(-) [6z(llexp(-iK.f)13) - 6,,{~(exp(-iK.f)I~)] (24a) U 2 , K  ;? 

where ( E * ) - '  = - &il and 

The effective vertex (24a) is identical to Frohlich's vertex, but with the renormalised 
frequency Oo instead of oo , defined by the Lyddane-Sachs-Teller relation. For CuBr 
one has hoo  = 20 meV, = 6, E ,  = 5.4, A L T  = 12.2 meV, E T  = 2.9644 eV (Levy et a1 
1985). In this case we have Q = w o  , but 

and the Frohlich interaction is reduced by about 9%. 

exciton with wavevector Q = 0: 
Finally, we end this paper by writing the explicit form of equation (19) for the r6 x Ts 

- E)(k E ~ ) a c c , d k p  + C ? ( ~ , P ;  E B ) ~ ~ C , ) F ~ ( ~ , ( P )  = EBF,,(~) 

where the exciton binding energy EB = EG - hwl,(Q = 0). 
The first four terms, which are the kinetic energies of the electron-hole pair, the 

screened Coulomb interaction between them and Elliott exchange, form the Schrodinger 
equation for the excitons in a rigid lattice (Rossler and Trebin 1981). In comparison to 
an exciton in a rigid lattice, equation (25a) contains additionally a self-energy correction 
I@)  to the kinetic energy as well as an effective electron-hole interaction I(*) due to the 
exchange of longitudinal polaritons 

( 2 5 ~ )  
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It is easy to prove that I @ )  is definitely different from the sum of the corresponding 
free-polaron self-energy corrections, defined by equations (17). 

A critical remark should be made concerning the accuracy of the numerical results, 
obtained eventually by solving equations (25 ) .  In order to solve (25) one needs the input 
bare-mass parameters. But, the parameter sets obtained, for example from magneto- 
optical data or from cyclotron resonance, must be interpreted as polaron-mass 
parameters. Thus, we need some additional procedure of converting the polaron-mass 
parameters into the bare-mass parameters. One may well ask whether this conversion 
does not affect the accuracy of the numerically calculated exciton binding energy. 
Despite the above remark, equations (25)  were evaluated analytically in the simple case 
of parabolic bands neglecting the Elliott exchange (see Oswald and Egri 1983). As can 
be seen, the binding energy agrees well with other theories and experimental values for 
a number of direct-band-gap semiconductors. 
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